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Measurement of Thermal Diffusivity by the 
Flash Method for a Two-Layer Composite Sample 
in the Case of Triangular Pulse 1 

X. Z. Zhang, 2 G. H. He, 2 Z. Wei, 2 and B. L. Zhou 2 

A method for measuring thermal diffusivity in one of the layers of a two-layer 
composite sample has been described. The heat transfer problem of a two-layer 
sample associated with pulse thermal diffusivity measurements has been 
analyzed for two cases: exponential and square-wave pulses. According to our 
measurements, a triangular heat-pulse function approximates reasonably well 
the output of the Nd-glass laser. In this paper, an expression is derived for the 
temperature transient at the rear face of two-layer sample being subjected to a 
triangular heat-pulse input on the front face. The analytical solution of the 
problem forms the basis of our method of data reduction. This solution has 
been programmed for computer processing of the data. The method described 
here has been successfully tested by limited measurements on copper and iron. 
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1. I N T R O D U C T I O N  

The flash m e t h o d  for measur ing  the rmal  diffusivity, or ig inal ly  p r o p o s e d  by 
P a r k e r  e t a l .  [ 1 ]  in 1961, has found widespread  appl ica t ions .  N o w  the 
m e t h o d  has been ex tended  to the measuremen t  of the rmal  diffusivity in a 
two- layer  compos i t e  sample.  F o r  example ,  the hea t  transfer  p rob l e m of a 
two- layer  sample  has been ana lyzed  for two cases: exponent ia l  and  square-  
wave pulses. In  1968, L a r s o n  and  K o y a m a  [ 2 ]  gave results for a pa r t i cu la r  
exponen t ia l  pulse character is t ic  of their  flash tube. In  1974, Bulmer  and  
Tay lo r  [ 3 ]  s tudied  the p rob l em for a square-wave  pulse which they con- 
s idered to be a p p r o x i m a t e l y  of the form of a sol id-s ta te  laser  pulse. These 
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two pulse functions are appropriate, however, only for some experimental 
situations. In fact, heat-pulse functions are different for different conditions. 
According to our measurements, a triangular heat-pulse function 
approximates reasonably well the output of the Nd-glass laser. Heckman 
[4]  also believed that a triangular pulse will cover a broader range of 
experimental situations than the other two types of pulses. In this paper, an 
expression is derived for the temperature transient of a two-layer sample 
which is subjected to a triangular heat-pulse input on the front face. The 
method described here has been successfully tested by limited 
measurements on copper and iron. 

2. MATHEMATICAL M O D E L  

The two-layer composite sample is a slab, with the first layer con- 
sisting of one material and the second of another. It is desirable to use a 
two-layer sample for some materials such as oxide film and coating, which 
are too friable or too thin to make a single-layer sample. An appropriate 
model may be visualized as a composite slab of infinite extension in the 
radial direction as shown in Fig. 1. The interface between the two media is 
located at x = 0. It is assumed that there is no contact resistance at the sur- 
face of separation. Furthermore, in the analysis presented, it is assumed 
that there is no radial flow of heat and no heat loss from either face, and all 
physical properties are independent of time and temperature. No finite 
pulse-time effects I-5] are introduced, since no assumption is made 
regarding the instantaneous nature of the pulse of the heat-input source. 
Instead, a triangular heat-pulse function is assumed as shown in Fig. 2. It is 
often characteristic of this pulse that its peak intensity occurs at some time 
other than t = 0. For  that reason, an adjustable parameter b, which locates 

hea t 
pulse 

F(t) 

front 
face 

- medium I 

Plknown 
=._ C1 knOwn 

6~ I to be 

measured 

rear 
face 

medium 2 

[)2 known 
Cz known 
CZ 2 known 

Fig. 1. Model of a two-layer sample. 
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Fig. 2. The heat flux vs time for a triangular pulse. 
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the apex of the function, has been included. The analytic form of the pulse 
is 

l O (t~<0, t~>z) 

F(t)= Fot /bz  (O<<.t<<.bz) (1) 
Fo(z - t ) / (z  - bz)  (bz <~ t <<. z)  

This form is different from both the exponential pulse and the square-wave 
pulse. 

With the above assumptions, heat flow in the sample is described by 
the equations 

~201 1 ~01 
gx2 -t- =0 ( - l l < x < O )  (2) 

~3202 1 002 
~X 2 -+ 0 ( O < x <  12) (3) % ~t 

where 0j and % are the temperature excursion and thermal diffusivity, 
respectively, in the medium j (j = 1, 2). The following initial and boundary 
conditions are assumed to apply: 

01 = 0  (4) 

02=0 (5) 

-21 ~ =  F(t) (x= -11, t>0)  (6) 

( - - l l < X < 0  , t~<0) 

(0<X< 12, t~<0) 
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002 & : o  (x=12, t>o) (7) 

01 = 02 (x=O,t>O) (8) 

2 , 0 0 , =  002 
aX ~2~X (x=0,  t>0 )  (9) 

3. ANALYTICAL SOLUTION 

The problem represented by Eqs. (2)-(9) has not been analytically 
treated in the literature. Unlike the exponential and square-wave pulses, 
the triangular pulse possesses a more complex Laplace transform, which 
makes the calculation very difficult. Since the transform of Eq. (1) was not 
available in the tables of Laplace transform, we rewrite Eq. (1) in another 
form, and finally, the Laplace transform of the pulse function is obtained as 

F(s) F~ [~ exp(-brs)  exp_{_--:s).l (10) 
=~s "-5 b (1 -b )  } 1 - b  J 

Through the use of the Laplace transformation Eqs. (2)-(9) become 

d201 s 
01 =0  (--1, < x < 0 )  (11) 

dx2 ~i 

d202 s 02=0 (12) 
dX2 ~ 2 

(O<x< 12) 

__2 dOl Fo[ ~ e x p ( - b r s ) e x p ( - z s )  1 
~ x = z s  --7 b (1 -b )  F 1 7 b  _] ( x = - l l , s > O )  (13) 

dO---2 = 0 (x = 12, s > O) (14) 
dx 

0,  = 02 (x = 0, s > 0) (15) 

dO1 _ ~, dO2 
2, -)7-x - 2 -~x (x = 0, s > 0) (16) 

where Oj(x, s)=L[Oj(x, t)] ( j =  1, 2). Solving these equations, one obtains 
the transformed solution in medium 2 as 

+ 

x ch[(U2s)l/2(1 - #12)] 
02(x, s)= 27(21 P l C1 )1/2 $5/2 [sh( UI S)1/2 ch(U2s)l/2 + a ch(UlS) m sh(U2s) m ] 

(17) 
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where 

vj=l~ 
~j 

X 
H 

(Ul~ 1/2 

C l l l p l  
H 

C212P2 

(j  = 1, 2) 

(18) 

Then the expression for the temperature excursion in medium 2 is given by 
the inversion integral as 

1 fxo+io~ 02(x,s) es'ds 02(x, t)=T~i x0-,~ (19) 

For convenience we take the temperature excursion in medium 2 relative to 
the final adiabatic equilibrium temperature difference 0~ and define a 
dimensionless variable V2(x, t) such that 

02(x, t) 2(pl c111 + p2c212) 
V2(x, t )= = O2(x, t) (20) 

0o, Foz 

Using Eq. (17) and Eq. (19), we obtain 

V2(x, t)= 1 2(U~/2-J-ffU1/2) fXo +i~ 
2rti ~2 Xo-ioo f (s)  ds (21) 

where the integrand f ( s )  is 

{ ( I /b )  - [ e x p ( -  b v s ) / b ( 1  - b)]  + [ e x p ( -  ~s)/(1 - b ) ]  }~ 

• ch[(U2s)l/2(1 --x/12) ] exp(st) J (22) 
f ( s )  = sS/2[sh(Uls)l/2 ch(U2s) m + a ch(Uls) 1/2 sh(U2s) 1/2] 

The integrand f(s)  has a pole of order three at s = 0. In addition, it has 
an infinite row of simple poles sk < 0 along the negative real axis of the 
complex s plane. These sk satisfy 

sh( Ux s) ~/2 ch( U2s) 1/2 + o ch( U1s) 1/2 sh( U2s) 1/2 = 0 (23) 
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Thus the vertical line s = X0> 0 is chosen as the path of integration of 
Eq. (21). To evaluate the integral of Eq. (21) the residue theorem is used. 
Thus 

V2(x,t)=2(Ul/2+aU~/2)[Res(O) + , ~ 2  ~ Res(sk)] (24) 
k = l  

where Res(sk) is the residue o f f ( s )  at s=sk .  The residue at s = 0 may be 
evaluated as follows: 

1 d 2 "C 2 1 
Res(0) = lira 3S-Z5 [s3f(s)] = '~  

s~O 1,. as  UI/2 ql_ ~ e l / 2  
(25) 

Evaluating this limit, we used the Maclaurin series of sh x and ch x many 
times. This procedure is very tedious. The residue o f f ( s )  at s =  sk can be 
calculated as 

Res(sk) = lira (s-- sk) f ( s )  
s ~ s  k 

2{ (l/b) - [exp( -bvsk)/b(1 - b)] + [ e x p ( -  zsk)/(1 - b)] }'~ 

x ch[(U2sk)l/2(1 -- x/12)] exp(sk t) 
- s2(Ul/2 + aU~/2)[ch(UlSk) 1/2 ch(U2sk) 1/2 + (2(X) sh(UlSk) '/2 sh(U2Sk) m]  

(26) 

where 

X +  H X  -1 
12(x) = (27) 

H + I  

For convenience we define the positive, real quantities/3k such that 

( U2 Sk)1/2 = i/3k ( 2 8 )  

Therefore, Eq. (26) becomes 

( 2U~{(1/b)- [exp(b~fl~/U2)/b(1 - b ) ]  + [exp(~fl2/U2)/(1 - b ) ]  })  
�9 exp( -/32 t/U2)" cos [/3k(1 - x/12)] 

Res(sk) = fl2(Ul/2 + aUm)[cos(f lkX) cos/3k - s sin(flkX) sin fl~] 

And Eq. (23) becomes 

sin(flkX) cos flk + a cos(flkX) sin flk = 0 

(29) 

(30) 
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Using Eq. (25) and Eq. (29) in Eq. (24), we obtain 

4U 2 
V2(x, t ) =  1 + T -  

�9 ~ {(l/b) - [ e x p ( b ~ / U 2 ) / b ( 1  - b)] + [ e x p ( ~ / U 2 ) / ( 1  - b)] } 

k = 1 /~4[cos(/~kX) cos//k -- s sin(/~kX) sin/3k] 

�9 exp( - - /~ t/U2) cos [-/~(1 - x/12)3 (31 ) 

Thus, the expression for the transient at the rear surface of a two-layer 
sample for the case of triangular pulse may be obtained from Eq. (31) as 
x = l  2 . 

4U 2 
V 2 ( t ) = l +  ~2 

( { (l /b) - [exp(bz~Z/Uz)/b(1 - b)3 + [exp(z~z/u2) / (1  - b)] } '] 

\ " e x p ( - ~ t / U 2 )  / 
k =1 fi4[cos(fikX) cos fi~ - (2(X) sin(flkX) sin flk] 

(32) 

From Eq. (32) the corresponding expression of a single-layer sample may 
be deduced. As an indirect check of the validity of the present analysis, we 
indicate that if the material properties in both media are set equal and the 
two layers are each taken as half the overall thickness, i.e., 11 = 12= 1/2, 
Eq. (32) yields the solution of the one-layer sample�9 With the above 
assumption from Eqs. (18), (27), (30), and (32) we obtain 

V(t)= 1 +2  ( -- l)k k47z4,~2 
k = l  

1 exp(k27r2b~/to) exp(k27z2z/to) 1 
" b b ( 1 - b )  t- ~- _---ff 3 

�9 exp( - k2~2t/tc) (33) 

where to= 12/~. Equation (33) is identical to the expression previously 
derived by Heckman [4]  for the rear-face temperature excursion of the 
one-layer sample whose front face is heated by a triangular pulse�9 

4. E X P E R I M E N T A L  M E T H O D  

Equations (30) and (32) have been programmed for calculation on a 
computer. In the experiment measuring the value of tl/2, which is the time 

840/7/'4-6 
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Table I. Experimental Results 

Thermal diffusivity 
(em 2 �9 s -1) 

Medium Thickness Density Specific heat 
(cm) (g. cm-3) (J. kg i. K 1) Known Calculated 

Copper 0.403 8.9 385 1.12 1.09 

Industrial 
pure iron 0.202 7.8 440 0.21 0.208 

at which the rear-face temperature reaches half-maximum, together with 
the values of Pl,  c~, 11, P2, c2, 12, ~2, z, and b are read in as data to the 
computer. Thus, unknown ~1 is obtained by an iterative method. 

The laser thermal conductivity equipment employed uses a Nd-glass 
laser as the heat-pulse source. Its parameters corresponding to the 
triangular pulse are as follows: b = 0.1 and z = 7.8 x 10 -4 S. 

The composite samples of copper and industrial pure iron were 
fabricated. The thermal diffusivities of each component  are known. The 
sheets of copper and iron were joined with tin solder whose thickness is 
about 0.006 cm. We regard the layer of the solder as iron in the course of 
calculation because its thickness is small and its diffusivity approximates 
that of iron. First, it was assumed that the diffusivity of copper was known 
and the diffusivity of iron was to be calculated; and second, the opposite 
was assumed. 

The experimental results at room temperature are summarized in 
Table I. From the table it may be seen that the results obtained by the 
present method are in reasonably good agreement with the generally accep- 
ted values; the uncertainty is estimated to be about  3 %. In conclusion, the 
present work indicates that the method has been successfully tested and 
that it may be considered to be acceptable. 
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